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We investigate the influence of the ellipticity of a columnar vortex in a rotating
environment on its linear stability to three-dimensional perturbations. As a model of
the basic-state vorticity distribution, we employ the Stuart steady-state solution of
the Euler equations. In the presence of background rotation, an anticyclonic vortex
column is shown to be strongly destabilized to three-dimensional perturbations when
background rotation is weak, while rapid rotation strongly stabilizes both anticyclonic
and cyclonic columns, as might be expected on the basis of the Taylor–Proudman
theorem. We demonstrate that there exist three distinct forms of three-dimensional
instability to which strong anticyclonic vortices are subject. One form consists of a
Coriolis force modified form of the ‘elliptical’ instability, which is dominant for vortex
columns whose cross-sections are strongly elliptical. This mode was recently discussed
by Potylitsin & Peltier (1998) and Leblanc & Cambon (1998). The second form of
instability may be understood to constitute a three-dimensional inertial (centrifugal)
mode, which becomes the dominant mechanism of instability as the ellipticity of the
vortex column decreases. Also evident in the Stuart model of the vorticity distribution
is a third ‘hyperbolic’ mode of instability that is focused on the stagnation point that
exists between adjacent vortex cores. Although this short-wavelength cross-stream
mode is much less important in the spectrum of the Stuart model than it is in the
case of a true homogeneous mixing layer, it nevertheless does exist even though its
presence has remained undetected in most previous analyses of the stability of the
Stuart solution.

1. Introduction
Large-scale vortices play an important role in the dynamics of the atmosphere and

ocean. Such quasi-two-dimensional structures are clearly visible in satellite images,
which can provide essential information concerning vortex formation, characteristic
spatial scale and lifetime. It is often found to be the case that individual vortices with
vertically oriented axes may be organized so as to form extended coherent structures
such as vortex streets. Examples of such structures are described, for example, in Etling
(1990) and Potylitsin & Peltier (1998) who discuss the von Kármán vortex streets
that are often observed to develop in the lee of Jan Mayen island in the Norwegian
Sea. The development of such two-dimensional trains of vortices, in which individual
vortex axes are oriented vertically, may often occur through the barotropic instability
mechanism of quasi-two-dimensional flows, which have embedded large-scale shear
in horizontal velocity.
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One of the most important and interesting questions concerning the dynamics
of such two-dimensional coherent structures is their stability to three-dimensional
fluctuations. It is clear that the two-dimensional evolution of such vorticity distri-
butions will not depend on the background rotation if the influence of rotation is
considered from the f-plane perspective and if the axis of rotation is parallel to the
axis of the vortices in the developed two-dimensional flow. In such circumstances
two-dimensional evolution of the flow may be studied through numerical solution
of the two-dimensional nonlinear (barotropic) dynamical system which includes the
influence of neither stratification nor background rotation.

Only in very special circumstances, however, will such flows remain two-dimensional.
Close examination of both satellite images of atmospheric flows and related labora-
tory experiments reveals that anticyclonic vortex columns tend to be more unstable
than cyclonic columns. This may on occasion lead to the development of a broken
symmetry in the vorticity distribution in a vortex street such that anticyclonic vor-
tices do not appear. This broken symmetry is clearly evident in the satellite photos
described in Etling (1990) (see figure 5 in particular) and Potylitsin & Peltier (1998)
(see figure 1b).

Laboratory experiments that have been specifically designed to investigate the
evolution of mixing layers (e.g. Wygnanski et al. 1979; Browand & Ho 1983) have
demonstrated that fully three-dimensional motions invariably arise even though the
flow may tend to remain quasi-two-dimensional on the scale of the large vortices.
Hopfinger, Browand & Gagne (1982) have also observed the presence of intense
cyclonic vortices and much weaker anticyclones in the field of turbulence produced
with an oscillating grid in a deep rotating tank. In the rotating environment the
turbulence produced by the oscillation of the grid also leads to the formation of long-
lived vortices, which do not appear in the non-rotating case. Experimental analyses of
the evolution of barotropic vortices in a rotating environment by Kloosterziel & van
Heijst (1991) have also demonstrated that the behaviour of initially two-dimensional
cyclonic and anticyclonic vortices differs dramatically at moderate Rossby numbers.
In this experimental work it has been observed that a barotropic cyclonic vortex is
gradually transformed into a stable tripolar structure consisting of a cyclonic core and
two weaker anticyclonic satellites. On the other hand, an anticyclonic vortex tends to
be more unstable and in fact exhibits ‘explosively’ unstable behaviour, which leads
inevitably to an immediate split of the vortex column into two dipolar structures.

Theoretical analyses of the stability of non-rotating vortex columns have revealed
that such two-dimensional vorticity distributions do indeed support three-dimensional
linear secondary instabilities. The ellipticity of the streamlines in the vortex cores of
the basic-state flow, in particular, has been shown to be responsible for the existence of
a so-called translative or elliptical instability. Early analyses of the three-dimensional
stability properties of the Stuart vortex train by Pierrehumbert & Widnall (1982),
Pierrehumbert (1986) and Bayly (1986) were the first to reveal the existence of this
elliptical instability, which has the property that no short-wave cutoff exists in the
absence of dissipation. The streamwise wavelength of this instability equals that of
the basic flow while the cross-stream wavelength is only marginally shorter and the
structure of the instability is such as to lead to the periodic bending of the vortex
columns. In the work by Waleffe (1990) a physical interpretation of the breakdown of
two-dimensional elliptical flows via this mechanism has been proposed. The results of
these analyses are suggestive of a universal mechanism through which complex three-
dimensional motion might develop on two-dimensional elliptical vortex columns.

In a sequence of detailed analyses, Klaassen & Peltier (1985b, 1989, 1991) investi-
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gated the stability of a two-dimensional train of finite-amplitude Kelvin–Helmholtz
waves to arbitrary three-dimensional perturbations. They focused upon the role of
transverse secondary instability on the evolution of such Kelvin–Helmholtz billows, a
basic state which differs significantly from the Stuart model that had been chosen as
the basis for analysis by Pierrehumbert & Widnall (1982). The analysis of such vortex
trains also revealed the existence of a braid-centred mode of instability, which had
not been found in the original work on the spectrum of the Stuart model and which
derives from what we might refer to as ‘hyperbolic’ instability. Higher resolution
analyses of the Stuart vortex by Klaassen & Peltier (1991), however, also confirmed
the existence of this mode although with a lower growth rate than that which was
obtained for the Kelvin–Helmholtz model. The hyperbolic stagnation points between
adjacent vortex cores of the basic state train of Kelvin–Helmholtz waves are the
regions within which this instability concentrates. The authors suggested that this ‘hy-
perbolic’ instability is the mechanism which is responsible for the streamwise vortex
streaks whose appearance is precursory to the turbulent collapse of the unstratified
mixing layer rather than the elliptical mode.

Numerical analyses of the evolution of the braid region between adjacent vortices
were also performed by Corcos & Lin (1984), although their work was not formulated
in terms of the search for a secondary linear instability of the highly nonlinear
two-dimensional basic-state flow; rather they sought to explain the appearance of
streamwise vortex streaks in terms of a non-linear ‘collapse’ process. The linear
secondary ‘hyperbolic’ mode of instability was however fully confirmed in the more
refined theoretical analyses of the three-dimensional stability of two-dimensional
Kelvin–Helmholtz billows by Smyth & Peltier (1991, 1994). Full three-dimensional
nonlinear simulations of shear flow evolution have also been performed by Caulfield
& Peltier (1994) to further confirm that the new ‘hyperbolic instability’ actually
dominates in an unconstrained three-dimensional flow which is evolving in time so
long as the stratification is sufficiently weak. In such simulations the characteristic
streamwise streaks of vorticity between adjacent vortex cores develop spontaneously.
It was of course on the basis of earlier laboratory experiments that it was first
revealed that it was in the braid regions between adjacent vortex cores rather than in
the elliptical cores themselves that intensive three-dimensional motions originated. The
‘rib’ vortices that are now known to develop as a consequence of hyperbolic instability
were observed in the braid regions between adjacent vortices in unstable plane mixing
layers by Bernal & Roshko (1986), Lasheras, Cho & Maxworthy (1986), Lasheras &
Choi (1988), Nygaard & Glezer (1991) and Schowalter, Van Atta & Lasheras (1994).

Further investigations of the three-dimensional stability of columnar vortices in the
presence of rotation have recently been discussed by Smyth & Peltier (1994). These
authors focused their attention upon the question of the linear stability of a train
of Kelvin–Helmholtz vortices with vertically oriented axes on the so-called f-plane.
The existence of both elliptical and hyperbolic modes of instability was confirmed
in these analyses, which also revealed the existence of a new ‘edge mode’ of three-
dimensional instability. This instability was found to inhabit the region surrounding
anticyclonic vortex cores at moderate Rossby numbers. In the subsequent work
by Potylitsin & Peltier (1998) these analyses were extended to incorporate density
stratification parallel to the axes of both Kelvin–Helmholtz and ‘Kida-like’ vortices
(e.g. see Kida 1981; Potylitsin & Peltier 1998). In this work an additional mode of
elliptical instability modified by the Coriolis force was also discovered for anticyclonic
vortices at moderate Rossby numbers.

Leblanc & Cambon (1998) have very recently analysed the linear stability of Stuart
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vortices in the presence of the Coriolis force and also noted the destabilization
of Stuart vortices by weak anticyclonic rotation. Building on the earlier work of
Cambon et al. (1994) they also attempted to further clarify the physical mechanism
of the instability using local linear instability theory. However, their analysis failed
to identify the existence of either the ‘edge’ mode of Smyth & Peltier (1994) or the
‘hyperbolic’ mode of Klaassen & Peltier (1991) when this model of the basic state
was employed. Their analyses have therefore called into question the results of both
Klaassen & Peltier (1991) for the non-rotating Stuart model and Potylitsin & Peltier
(1998) for the rotating Kelvin–Helmholtz model.

Carnevale et al. (1997) have recently focused upon a model system consisting
of an isolated Gaussian columnar vortex and investigated the way in which the
three-dimensional instability of the unstratified vortex column evolves at finite am-
plitude. These fully three-dimensional simulations also revealed extreme differences
in the behaviour of cyclonic and anticyclonic vortices. The selective destruction of
anticyclones at moderate Rossby number has also been very clearly revealed in the
numerical simulation of rotating turbulence in homogeneous three-dimensional fluid
by Bartello, Metais & Lesieur (1994), whose work in fact motivated the original
theoretical analyses of Smyth & Peltier (1994).

The results obtained in these numerical simulations may be explained only by the
presence of three-dimensional secondary circulation in the flow. The initial analyses
of the linear stability of a barotropic vortex column on the f-plane, based upon the
Kelvin–Helmholtz model, clearly demonstrated the existence of a three-dimensional
instability to which anticyclonic vortex columns are selectively subject in circumstances
in which the Rossby number is moderate (i.e. of order unity). This mechanism arises
in flow with relatively weak background rotation which tends to reduce the absolute
vorticity of an anticyclonic vortex to a value near zero and, thereby, to destabilize the
flow. It will be noted on the basis of the above discussion that there do therefore exist
three distinct forms of three-dimensional instabilities to which strong anticyclonic vor-
tex columns are subject. One form may be identified as an elliptical instability modified
by the Coriolis force. This type of instability has been clearly identified in the recent
work by Potylitsin & Peltier (1998) and Leblanc & Cambon (1998). The second form
may be understood to constitute a three-dimensional inertial (centrifugal) instability
which appears on the edge of the anticyclonic columnar vortex (Smyth & Peltier 1994;
Potylitsin & Peltier 1998). Also evident in these rotating flows is the same ‘hyperbolic’
instability that is focused on the stagnation point that exists between adjacent vortices
in a vortex train that is not subject to rotation. It has already been shown that this
mode of instability achieves its maximum growth rate in the vicinity of zero back-
ground rotation but continues to persist for non-zero values of background rotation.

Our goal in this paper is to provide a detailed assessment of the circumstances in
which these unstable modes may appear as well as to make a connection between
the three distinct types of three-dimensional instabilities that are supported by strong
anticyclones. In particular we will investigate thoroughly the influence of the ellipticity
of the vortex streamlines on the mechanism of three-dimentional instability. This
influence was only briefly described in the previous analysis by Potylitsin & Peltier
(1998) and our goal in the present paper is to provide a systematic investigation of this
effect. One of the greatest concerns in the present context, however, is to address issues
arising from the fact that Leblanc & Cambon (1998) found no evidence of the existence
of either the ‘edge’ or ‘hyperbolic’ instabilities for the single highly elliptical vortex
whose stability they analysed. Our primary goal in the present paper will therefore be
to demonstrate that these modes do in fact also exist for the rotating Stuart model.
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In the analyses of this issue that form the core of the present paper, we will therefore
employ the Stuart model (Stuart 1967) with various values of the ellipticity parameter
of the vorticity distribution. Stuart vortices are often considered to constitute a useful
stationary inviscid model of a two-dimensional shear layer with embedded co-rotating
columnar vortices. The advantage of this model is that the ellipticity of the vortices
can be easily varied, which will allow us to investigate the influence of ellipticity
on the mechanisms of three-dimensional instability. Our analyses will pertain to the
regime of moderately high Rossby number, for a reason that will become apparent
below. By comparing the results of analyses performed for different values of the
ellipticity of the vortex column, we will reveal the circumstances in which one or
another of the above discussed three mechanisms of instability becomes dominant.

In the next section of the paper we will review the theoretical methods that we
have previously developed to enable detailed investigation of the broad class of
problems in which the issue of the stability of two-dimensional flow to arbitrary
three-dimensional perturbations arises. Section 3 is devoted to the presentation and
analysis of the results that we have obtained by applying this theoretical formalism
to analyse the stability of Stuart vortices as a function of their ellipticity. Conclusions
are summarized in § 4.

2. Methodology
The formalism for multi-dimensional stability analysis that we will employ was

originally developed by Klaassen & Peltier (1985b, 1989, 1991) and by Smyth &
Peltier (1989, 1991, 1994), and has recently been extended so as to incorporate the
influence of a stable density stratification parallel to the axis of a two-dimensional
vortex by Potylitsin & Peltier (1998). In the present work our attention will be
restricted to the investigation, in the case of inviscid unstratified flow, of the linear
stability of a periodic row of columnar vortices arranged as in figure 1 and described
by the Stuart model. The geophysically unconventional labelling of the coordinate
axes has been employed so as to maintain consistency with previous analyses in which
the coordinate direction normal to the mean flow was taken to be the z-direction.
If the angular velocity Ω is taken to represent the Earth’s rotation, then our x-, y-
and z-axes would denote the zonal, vertically downward and meridional directions,
respectively.

2.1. The two-dimensional Stuart model of the vorticity distribution

Stuart (1967) reported the existence of a family of steady solutions of the two-
dimensional Euler equations, the non-dimensional stream function for which is given
by the expression

ψ = − (1− ρ)2

1− ρ2
log[cosh (z −H/2) + ρ cos x] (2.1)

while the corresponding non-dimensional vorticity has the form

ω =

(
1− ρ

cosh(z −H/2) + ρ cos x

)2

(2.2)

in which ρ is the ellipticity parameter, which lies in the range 0 6 ρ < 1. Note that (2.1)
and (2.2) have been non-dimensionalized in terms of the length scale L which equals
the total length of the domain (see figure 1) and the velocity scale U which equals
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Figure 1. The definition of the coordinate system. The system rotates along the y-axis with the
angular velocity Ω = f/2, where f is the Coriolis parameter. L and H are the x- and z-dimensions
of the computational domain. U is the velocity scale of the shear layer.

half the total change in velocity across the shear layer. The non-dimensionalization
procedure is slightly different from that employed in previous studies by Smyth &
Peltier (1994) and Potylitsin & Peltier (1998) where the fundamental length scale was
taken to be h which equals half the total depth of the shear layer. Note also that the
maximum value of the non-dimensional vorticity is equal to one for any value of the
vortex parameter ρ.

The exact Stuart solution of the steady-state Euler equations given by (2.1) and (2.2)
describes a shear layer centred on the line z = H/2 between two uniform streams.
Indeed U = ±(1−ρ)2/(1−ρ2) and W = 0 as z → ±∞. The value of ρ = 0 corresponds
to the hyperbolic tangent parallel shear flow U = (1 − ρ)2 tanh (z − H/2)/(1 − ρ2),
while in the limit ρ → 1 the Stuart solution describes a single 2π-periodic row of
co-rotating point vortices aligned along the x-axis.

The Stuart model has several limitations as a model of the nonlinear waves that are
physically realizable in a shear flow. Both experimental (Winant & Browand 1974)
and numerical (Corcos & Sherman 1984) studies of shear flows have demonstrated
that the vorticity between two adjacent vortex cores is compressed into thin strands or
filaments often referred to as ‘braids’, while the Stuart solution does not contain these
structures. The most unstable mode of the hyperbolic tangent shear flow has non-
dimensional streamwise wavenumber α = 0.44, while the Stuart vortices (wavenumber
α = 1) have about half the wavelength of physically realized disturbances. Further-
more, unsteady behaviour (Klaassen & Peltier 1985a; Potylitsin & Peltier 1998) in the
form of vortex nutation is clearly evident in the mixing layer and is not described by
the Stuart model. However, the Stuart vortex may nevertheless provide a useful model
of columnar vortices in shear flow, so long as we bear these limitations in mind.

In the present context we will employ the Stuart model with three different values
of the vortex parameter ρ: namely 0.33, 0.50 and 0.75. As the vortex parameter ρ
increases, the ellipticity of the Stuart vortex decreases (see figure 2), and the vortex
transforms from the elliptical form (figure 2a), where the elliptical instability is
expected to play a crucial role, to an almost circular form (figure 2c), where we might
reasonably expect the centrifugal instability of Smyth & Peltier (1994) to dominate.
Therefore stability analyses of the Stuart vortex for different values of the vortex
parameter ρ will reveal the influence of the ellipticity of the vortex on its stability
characteristics and will allow us to fully understand the nature of the connection
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Figure 2. The two-dimensional vorticity ω and stream function ψ in the (X,Z )-plane for the
Stuart vortices with various values of the vortex parameter ρ: (a) ρ = 0.33 (highly elliptical vortex),
(b) ρ = 0.50 (moderately elliptical vortex), (c) ρ = 0.75 (vortex with low ellipticity).

between the results obtained by Potylitsin & Peltier (1998) for the Kelvin–Helmholtz
model and by Leblanc & Cambon (1998) for the Stuart model with high ellipticity.

2.2. Three-dimensional stability theory for two-dimensional coherent vortex structures
in rotating flow

In this section we will discuss the mathematical methods that have been developed
to analyse the three-dimensional linear stability of the Stuart model of the vorticity
distribution described in the last section. In the present context we will restrict our
attention to the unstratified and inviscid case (the Froude number Fr = U/(NL), in
which N is the buoyancy frequency, will be assumed to be infinite), which simplifies
the mathematical formalism substantially. In what follows, we will provide only a brief
summary of the basic methodology and highlight a number of details not previously
enumerated.

The momentum conservation and continuity equations for three-dimensional, in-
compressible and rotating flow in the f-plane approximation are

U t + (U · ∇)U = −1

ρ
∇p− f ×U , (2.3a)

∇ ·U = 0. (2.3b)

The method of analysis that we will employ is based upon a linearization of the
momentum balance equations. These are linearized in perturbations about a basic
two-dimensional state which is independent of the spanwise (y) coordinate. Assuming,
without loss of generality, that three-dimensional perturbations vary sinusoidally in
the spanwise direction parallel to the axis of the vortex column, we may expand the
three-dimensional fields Φ as

Φ(x, y, z, t) = Φ̃(x, z, t) + φ̂(x, z, t)eidy, φ̂(x, z, t)� Φ̃(x, z, t) (2.4)

in which Φ̃ is the corresponding field of the barotropic basic state, φ̂ represents the
complex amplitude of the corresponding perturbation to the basic state and d denotes
the spanwise wavenumber.
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The linearized momentum balance and continuity equations that determine the
evolution of small-amplitude perturbations can be written in the form of the following
linear partial differential equations:

ût = −Ũûx − Ũxû− W̃ ûz − Ũzŵ − p̂x +
1

Ro
ŵ, (2.5a)

v̂t = −Ũv̂x − W̃ v̂z − idp̂, (2.5b)

ŵt = −Ũŵx − W̃ xû− W̃ ŵz − W̃ zŵ − p̂z − 1

Ro
û, (2.5c)

ûx + idv̂ + ŵz = 0, (2.5d)

in which the Rossby number Ro = U/fL and the pressure scale is [p̂] = ρ0U
2.

Combining partial derivatives with respect to the corresponding spatial variable of
each of the x-, y- and z-coordinate momentum balance equations in (2.5) with the
continuity equation (2.5d), a diagnostic equation for the pressure is obtained that has
the following form:

∆p̂ = − 1

Ro
(ûz − ŵz)− 2(Ũxûx + Ũzŵx + W̃ xûz + W̃ zŵz) (2.6)

which now replaces the continuity equation (2.5d).
To solve the set of linear partial differential equations (2.5) together with the

diagnostic equation for pressure (2.6) we restrict attention to the domain 0 6 x 6 L,
0 6 z 6 H . The boundary conditions on the amplitudes of the three-dimensional
perturbations in the z-direction are, on z = 0, H ,

ûz = v̂z = ŵ = p̂z = 0. (2.7)

The pressure and velocity perturbations are assumed to exhibit the same periodicity
in the streamwise direction as does the basic-state two-dimensional flow so that
sub-harmonic instability is suppressed. Therefore, the x- and z-dependence of the
problem may be represented spectrally as a sum of orthogonal functions by applying
the Galerkin formalism. Using this technique the velocity and pressure perturbations
may be expanded as  û

v̂
p̂

 =

 uλν
vλν
pλν

Fλν, ŵ = wλνGλν , (2.8)

in which it is understood that repeated indices are to be summed over. The complete
set of orthogonal functions is defined as

Fλν = eiλαx cos
νπ

H
z, (2.9a)

Gλν = eiλαx sin
νπ

H
z. (2.9b)

The orthogonal functions Fλν and Gλν are selected so that the boundary conditions
on z = 0, H are satisfied automatically.

It is worth noting that if the solutions of interest had appreciable amplitude near
the boundaries z = 0, H , then the boundary condition for p̂ would need to be replaced
by p̂z = −Ro−1û. It would therefore follow, in the case in which f is non-zero, that
the pressure perturbation would be expanded in terms of the Gλν rather than Fλν
to take into account the Coriolis force. Therefore, coefficients of the stability matrix
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Aκµλν (t) (see below) would have slightly different forms. In the present application, the
eigenfunctions of the stability problem are localized far from the rigid boundaries and
there is no appreciable difference between the results obtained using the two different
sets of boundary conditions on z = 0, H , namely p̂z = 0 or p̂z = −Ro−1û.

By substituting expansions (2.8) into (2.5) and (2.6) and computing the inner
products 〈F∗κµ•〉 or 〈G∗κµ•〉 with each equation, where • represents any equation of the
set (2.5) and (2.6) and in which the symbol ∗ denotes complex-conjugation, the final
set of equations may be derived. The pressure may clearly be eliminated from the
system (2.5) using the diagnostic equation (2.6). The inner product is explicitly

〈?〉 =
α

πH

∫ 2π/α

0

dx

∫ H

0

? dz. (2.10)

Application of this procedure reduces the system of partial differential equations
to a set of linear ordinary differential equations. In following this sequence of steps
it is important to note that 〈F∗κµFλν〉 = δλνδµν(1 + δµ0) and 〈G∗κµGλν〉 = δλνδµν(1− δµ0).
These operations reduce (2.5) and (2.6) to the following matrix form:

d

dt

 uκµ

vκµ

wκµ

 =

 〈UU〉κµλν 0 〈UW 〉κµλν
〈VU〉κµλν 〈VV 〉κµλν 〈VW 〉κµλν
〈WU〉κµλν 0 〈WW 〉κµλν


 uλν

vλν

wλν

 . (2.11)

It is now obvious that the set of equations for vκµ decouples from the system and
in order to reduce the dimension of the matrix one may remove these equations from
(2.11) because uκµ and wκµ do not depend on vλν . Applying this reduction leads finally
to the following set of ordinary differential equations:

d

dt

(
uκµ

wκµ

)
=

( 〈UU〉κµλν 〈UW 〉κµλν
〈WU〉κµλν 〈WW 〉κµλν

)(
uλν

wλν

)
(2.12)

and to a diagnostic equation for the velocity component vκµ, namely

vλν = −λα
d
uλν +

iDν
d
wλν , (2.13)

in which Dν = νπ/H . Note also that element ωλν(ν=0) does not influence the velocity
perturbation field because Gλν(ν=0) ≡ 0. Therefore the corresponding matrix elements
can also be removed from equation (2.12).

Owing to the finite memory of available computers, we have truncated the above
spectral series and for this purpose have employed the triangular scheme of Klaassen
& Peltier (1985b), namely 2 | λ | +ν 6 Nt, where Nt is a global truncation level.

Equation (2.12) may also be rewritten in an equivalent vector form by concatenating
the Galerkin amplitudes so as to form a vector v. This leads to the equation

dv

dt
= A(t)v, v =

(
uλν
wλν

)
, (2.14)

in which the matrix A(t), which is in general time dependent, has elements which
depend upon the four-dimensional spectral interaction coefficients (e.g. 〈UU〉κµλν , etc.).
These spectral coefficients are listed in the Appendix for the inviscid problem of
interest to us here. Depending upon the time dependence of the basic state two-
dimensional flow, which determines the time dependence of the matrix A, the solution
of the evolution equation (2.14) could prove to be complicated indeed (e.g. Baym
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1968; Drazin & Reid 1981). In the present context, however, our focus will be upon
the stability characteristics of the steady two-dimensional Stuart model of vortical
basic states in which case A is time independent. In such circumstances we may safely
assume that temporal growth of the solution is exponential as v = vne

σnt, and (2.14)
then reduces to the standard matrix eigenvalue problem:

σnvn = Avn (2.15)

in which σn, the eigenvalue of A, is an exponential (in general complex) growth rate,
vn is the eigenvector corresponding to this eigenvalue and A is a time-independent
stability matrix (with elements listed in the Appendix) corresponding to some two-
dimensional vorticity distribution.

3. Columnar vortex stability: the Stuart model
In this section we will discuss the stability of Stuart vortices to three-dimensional

perturbations as a function of the ellipticity parameter ρ. Because the length of the
computational domain of the two-dimensional flow equals the wavelength of the train
of coherent structures, the secondary instability analyses deliver only unstable modes
whose streamwise wavelength equals that of the primary wave. The global truncation
level for our analyses is set to Nt = 37 (significantly higher than it was possible to
achieve in the work of Smyth & Peltier 1994) for all analyses of unstratified flows
and it was shown through detailed comparative analyses (not shown) that all of the
results to be reported herein are not significantly altered by further increase of this
parameter. We will not explore the influence of stratification herein in order to focus
upon comparison with the results of Leblanc & Cambon (1998). Through explicit
analysis it has been shown in the previous work of Potylitsin & Peltier (1998) that
sufficiently strong density stratification stabilizes two-dimensional columnar structures
to disruption by modes of three-dimensional instability that exist even in the absence
of rotation. In many cases the rate of stabilization depends on the nature of the
instability. On the other hand, the viscosity of the fluid obviously introduces a
short-wave cutoff in the growth rate as the spanwise wavenumber rises. The same
behaviour is also characteristic of the spectrum of the Stuart model and it is therefore
unnecessary to provide further discussion of the viscous case herein.

3.1. The case of high ellipticity

We begin presentation of the results of the stability analysis with those for the highly
elliptical case of the Stuart vortices with the vortex parameter ρ = 0.33 (see figure
2a). Results for this case have been discussed recently by Leblanc & Cambon (1998)
using a method of analysis that differs significantly from our own. We will provide a
thorough reanalysis of this case in order to fix ideas and to enable us to connect the
new results that we will obtain to this previous literature. As previously discussed, we
will assume the rotation to be characterized by a constant angular frequency Ω = 1

2
f,

where f is the so-called Coriolis parameter which appears in the context of analyses
of geophysical flows where it represents the local vertical component of the angular
velocity of the planet. The vector of background rotation is parallel to the y-axis, so
that the background vorticity, represented by f, is either aligned with or against the
relative vorticity field ω of the two-dimensional flow (see figure 1). Note also that, in
the case illustrated, the relative vorticity of the two-dimensional flow is positive while
the vector f points in the negative direction along the y-axis. In this case the vorticity
distribution is characterized as being anticyclonic.
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Figure 3. The instability spectrum for rotating unstratified Stuart vortices with the vortex parameter
ρ = 0.33, with d = 2 and Fr−2 = 0, as a function of inverse Rossby number Ro−1 = f/(U/L). The
plot shows only the most unstable modes. The spatial structures of these modes are displayed in
figures 4 and 5.

K ′ v′ x′

(a)

(b)

Figure 4. The perturbation kinetic energy K ′, spanwise velocity v′ and spanwise vorticity ω′ fields
in the (X,Z)-plane for (a) the L1 longitudinal mode at the point d = 2.0, Ro−1 = 0.1 and (b) the ε
elliptical mode at the point d = 2.0, Ro−1 = 0.3. The vortex parameter ρ = 0.33. Solid lines show
isolines with positive values while dashed lines represent isolines with negative values. The visual
non-dimensional size of the domain is 2π× 2π.

In figure 3, we plot the growth rates, σ, of the most unstable modes for the Stuart
vortex with the vortex parameter ρ = 0.33 as a function the inverse Rossby number
Ro−1 = f/(U/L), positive values of which therefore implying that the vorticity in
the columnar vortices is anticyclonic. The non-dimensional spanwise wavenumber for
these calculations was set to d = 2.0. This spectrum is determined by the eigenvalues
of the stability matrix, and in it all modes are stationary (i.e. their growth rates are
purely real). The entire set of modes with growth rates higher than σ = 0.12 at any
Rossby number is displayed on this figure.

The modal branch labelled L1 with the maximum growth rate in the vicinity of
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(b) (c)(a)

Figure 5. The entire family of instabilities for the Stuart model with ρ = 0.33. Isosurfaces of
x-component of the perturbation vorticity field for (a) the core-centred longitudinal L1 mode at
d = 2.0, Ro−1 = 0.0, (b) the braid-centred longitudinal L1 mode at d = 3.0, Ro−1 = 0.0 and (c) the
z-component for the elliptical mode labelled ε in the text at d = 2.0, Ro−1 = 0.3.

(a) (b) (c)

Figure 8. The smooth transition between the core-centred elliptical and braid-centred hyper-
bolic modes for the L1 longitudinal branch of instability with ρ = 0.33. Isosurfaces of the
x-component of the perturbation vorticity field for (a) the core-centred longitudinal L1 mode
at d = 2.0, Ro−1 = 0.0 (b) the transition state of the L1 mode at d = 2.4, Ro−1 = 0.0 and
(c) the braid-centred longitudinal L1 mode at d = 3.0, Ro−1 = 0.0.

zero background rotation represents a branch of longitudinal modes (Smyth & Peltier
1994) and is the counterpart in the present analysis of the structure first identified by
Klaassen & Peltier (1991). Note that in the present case the mode exhibits maximum
growth rate at the point Ro−1 = 0.1, while in the case of the Kelvin–Helmholtz
background flow (Smyth & Peltier 1994) the L1 mode has maximum growth rate
for precisely zero background rotation. The spatial structure of the mode at the
point Ro−1 = 0.1 is displayed in figure 4(a) in terms of its spatial distribution of
perturbation kinetic energy K ′, spanwise velocity v′ and spanwise vorticity ω′ in
the (X,Z)-plane. The perturbation kinetic energy is quadratic in the disturbance
fields, and the figure displays the average of this quantity over a single spanwise
wavelength in the form of a positive real function of x and z. The spanwise velocity
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Figure 6. The instability spectrum for non-rotating Stuart vortices with the vortex parameter
ρ = 0.33, with Ro−1 = 0 and Fr−2 = 0, as a function of wavenumber d. The plot shows only the
most unstable mode. The spatial structures of these modes are displayed in figure 7.

and vorticity perturbations vary sinusoidally with y, and the corresponding parts of
the figure for these eigenfunctions show the corresponding fields evaluated on a plane
of constant y, which has been chosen to coincide approximately with the maximum of
the perturbation quantity. The modal structure displayed in figure 4(a) is somewhat
core-centred, i.e. the perturbation fields achieve an extremum in the vicinity of the
core of the two-dimensional elliptical billows but they also have significant power on
the hyperbolic stagnation points.

The other branch of modes shown on figure 3 (labelled ε) represents a highly
core-centred mode with purely real growth rate. This mode achieves its maximum
growth near the point Ro−1 = 0.3 and its growth rate exceeds the maximum growth
rate of the L1 longitudinal mode. The spatial structure of the mode is shown in
figure 4(b). It is indeed tightly confined to the core and we could find no counterpart
of this mode in the non-rotating problem (Potylitsin & Peltier 1998). This branch
is therefore identified as comprising elliptical modes modified by the Coriolis force
because it exists only for elliptical vortices (see discussion of the results for the circular
limit of the ‘Kida-like’ vortex in Potylitsin & Peltier 1998). In figures 5(a) and 5(b)
we illustrate the L1 longitudinal mode of instability for the Stuart model with the
vortex parameter ρ = 0.33, the inverse Rossby number Ro−1 = 0 and for the two
respective values of the cross-stream wavenumber d = 2.0 and d = 3.0, in the form of
isosurface renderings of the perturbation vorticity field. In figure 5(c) the structure of
the elliptical ε mode at Ro−1 = 0.3 and d = 2.0 is also illustrated.

As the spanwise wavenumber d rises the growth rate of the unstable modes on the
L1 branch at first increases monotonically (Smyth & Peltier 1994) eventually reaching
a limiting value which depends on the Rossby number. In figure 6, we plot the growth
rate, σ, of the most unstable mode of the Stuart vortex as a function of the spanwise
wavenumber d at the point Ro−1 = 0. Inspection of the spatial structure of the modes
along this branch reveals that it changes abruptly from core-centred at low d to
braid-centred form at high d. The spatial structure of the mode at the point d = 2.0
is displayed in figure 7(a) in terms of its spatial distribution of perturbation kinetic
energy K ′, spanwise velocity v′ and spanwise vorticity ω′ in the (X,Z)-plane. The
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K′ v′ x′
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(b)

(c)

Figure 7. The perturbation kinetic energy K ′, spanwise velocity v′ and spanwise vorticity ω′ fields
in the (X,Z )-plane for the L1 longitudinal mode, (a) at the point d = 2.0, (b) d = 2.4 and (c)
d = 3.0. The vortex parameter ρ = 0.33 and the inverse Rossby number Ro−1 = 0.0. Solid lines
show isolines with positive values while dashed lines represent isolines with negative values. The
visual non-dimensional size of the domain is 2π× 2π.

modal structure displayed in figure 7(a) is core-centred, i.e. the perturbation fields are
focused in the vicinity of the core of the two-dimensional elliptical billows.

Considering next the spatial structure of the same L1 mode but at the point
d = 3.0 (see figure 7c), we note that the kinetic energy perturbation is now centred
on the hyperbolic stagnation points located between individual vortex cores. Since
our interest in this paper is primarily in the stability of isolated columnar vortices
it should be clear that only the core-centred modes of the L1 branch would exist
on an isolated vortex tube since in that circumstance the hyperbolic regions do not
exist. It is also interesting to note that a smooth transition between core-centred
and braid-centred modal structure exists. The characteristic spatial structure of the
L1 mode in this transition region is shown in figure 7(b). Core-centred and braid-
centred perturbations of the same intensity coexist. In figure 8 (page 216) we illustrate
the smooth transition between the core-centred elliptical mode and the braid-centred
hyperbolic mode in the form of isosurface renderings of the streamwise (x) component
of the perturbation vorticity field. While at high spanwise wavenumber (d > 3.0) the
modal structure of the L1 longitudinal mode changes abruptly from core-centred at
low d to braid-centred (Smyth & Peltier 1994), the modal structure of the ε elliptical
mode does not exhibit the same sensitivity to the change in cross-stream scale.

It is quite clear on the basis of these results that the L1 longitudinal core-centred
mode corresponds to the so-called ‘translative’ or elliptical instability (Pierrehumbert
& Widnall 1982; Bayly 1986; Waleffe 1990; Klaassen & Peltier 1985, 1989, 1991)
in that the perturbation vorticity field ω′ describes a translation of each vortex in
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the train of Stuart vortices in the same direction, a direction that varies sinusoidally
along the axis of the basic-state vortex tube. Under the assumption that nonlinearity
does not alter the fundamental character of the instability, we may infer the way in
which the originally columnar vortex would be altered by the growth of the linearly
unstable mode. Because the vorticity perturbation is sinusoidal in the y-direction, the
translative instability would initially induce bending of the vortex tubes in a sinusoidal
fashion with the wavelength corresponding to the most unstable wavelength in the
spectrum (Pierrehumbert & Widnall 1982). However, there exists another fast growing
instability in the L1 branch of the spectrum, which is not core-centred but rather
is centred on the hyperbolic stagnation point. The latter, which derives from what
we might refer to as ‘hyperbolic’ instability, is the origin of the streamwise vortex
streaks whose appearance is precursory to the turbulent collapse of the unstratified
mixing layer (Klaassen & Peltier 1985b, 1991; Smyth & Peltier 1991, 1994; Caulfield
& Peltier 1994). It is also worth repeating that in the spectrum of the Stuart model
an intermediate regime is also observed in which elliptical and hyperbolic instability
coexist (see figure 7b).

It will be noted that our result is identical to the result obtained recently by
Leblanc & Cambon (1998) for the Stuart vortex with the vortex parameter ρ = 0.33,
although these authors were unable to distinguish the core-centred branch of the L1

longitudinal modes nor were they able to identify the hyperbolic branch of the L1

instability.

3.2. The case of moderate ellipticity

Having both confirmed and extended the previous results obtained by Leblanc &
Cambon (1998) for the instability of the Stuart model with the ellipticity parameter
ρ = 0.33, we are in a good position to extend this work to consider Stuart vortices
with lower ellipticity. In this next step of the analysis, we wish to examine the influence
of the ellipticity of a vortex on the dominant modes of three-dimensional instability
of the vortex column under the action of background rotation. We will therefore
focus next upon the stability characteristics of the Stuart model with the vortex
parameter ρ = 0.50 (see figure 2b). The stability analyses for this and higher values of
the vortex parameter ρ are more complicated and require more careful analysis and
higher spatial resolution because of the nature of the stagnation point at the centre
of the Stuart vortex core. Our choice of the truncation level Nt = 37 was determined
on the basis of this being the level required to achieve convergence of the results for
these structures.

Figure 9 presents growth rates of the most unstable modes as a function of inverse
Rossby number (Ro−1) with the spanwise wavenumber d = 2.0 for Stuart vortices
with the vortex parameter ρ = 0.50. If one compares this instability spectrum with
that for the Stuart vortices with the vortex parameter ρ = 0.33 (see figure 3), it is
very clear that a high degree of similarity exists. The dominant mode (labelled ε) in
the spectrum for the anticyclonic vortex, when the background rotation is relatively
slow, once more has purely real growth rate. The eigenfunctions that determine the
spatial localization of this mode are again concentrated in the core of the background
vortex and the spatial structure of the mode (not shown here) is therefore similar to
the ε elliptical mode when the vortex parameter ρ = 0.33 (see figure 4b). The most
unstable point for this mode is slightly shifted to lower values of background rotation
compared to that in the instability spectrum in figure 3.

The branch of modes with maximum growth rate for small Ro−1 may be identified
as the L1 longitudinal mode and clearly corresponds to the L1 mode for the Kelvin–
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Figure 9. The instability spectrum for rotating unstratified Stuart vortices with the vortex parameter
ρ = 0.50, with d = 2 and Fr−2 = 0, as a function of inverse Rossby number Ro−1 = f/(U/L). The
plot shows only the most unstable modes. The spatial structures of these modes are displayed in
figure 10.

K ′ v′ x′

Figure 10. The perturbation kinetic energy K ′, spanwise velocity v′ and spanwise vorticity ω′ fields
in the (X,Z)-plane for the edge E1 mode at the point d = 2.0, Ro−1 = 0.1. The vortex parameter
ρ = 0.50. Solid lines show isolines with positive values while dashed lines represent isolines with
negative values. The visual non-dimensional size of the domain is 2π× 2π.

Helmholtz vortex (Smyth & Peltier 1994). The point of maximum growth rate along
the L1 branch of modes corresponds to precisely zero background rotation. The modal
structure of this mode for d = 2.0 is braid-centred, although it once more changes to
a core-centred form at lower spanwise wavenumbers.

The final branch of modes shown in figure 9 (labelled E1) represents a new type of
instability which was not observed for Stuart vortices with lower values of the vortex
parameter ρ. Its perturbation kinetic energy (see figure 10) is seen to be concentrated

Figure 11. The entire family of instability for the Stuart model with ρ = 0.50. Isosurfaces for the
x-component of the perturbation vorticity field for (a) the core-centred longitudinal L1 mode at
d = 0.5, Ro−1 = 0.0, (b) the braid-centred longitudinal L1 mode at d = 2.0, Ro−1 = 0.0; and the
z-component for (c) the edge E1 mode at d = 2.0, Ro−1 = 0.1, (d) the elliptical mode ε at d = 2.0,
Ro−1 = 0.25.

Figure 14. The entire family of instability for the Stuart model with ρ = 0.75. Isosurfaces of the
x-component of the perturbation vorticity field for (a) the core-centred longitudinal L1 mode at
d = 0.5, Ro−1 = 0.0 and (b) the braid-centred longitudinal L1 mode at d = 2.0, Ro−1 = 0.0; (c) the
z-component for the edge E0 mode at d = 2.0, Ro−1 = 0.3 and (d) the x-component for the elliptical
mode ε at d = 2.0, Ro−1 = 0.2.
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Figure 12. The instability spectrum for rotating unstratified Stuart vortices with the vortex parameter
ρ = 0.75, with d = 2 and Fr−2 = 0, as a function of inverse Rossby number Ro−1 = f/(U/L). The
plot shows only the most unstable modes. The spatial structures of these modes are displayed in
figure 13.

in a ring surrounding the core of the background vortex, so that, following Smyth
& Peltier (1994), this mode will be referred as the edge mode. The E1 mode achieves
its maximum growth rate at Ro−1 = 0.1. The E1 branch can also be identified as the
first harmonic of an edge mode sequence as we will see. In figure 11 we illustrate all
modes of instability for the Stuart model with the vortex parameter ρ = 0.50 in the
form of isosurface renderings of the perturbation vorticity field.

The E1 mode represents an entirely new class of modes which has no counterpart
in the non-rotating problem. It was pointed out in Smyth & Peltier (1994) that the
physical mechanism of instability for the edge mode is most usefully understood in
terms of the inertial (centrifugal) mechanism. In the case of the Kelvin–Helmholtz
vortex, the spatial location (Potylitsin & Peltier 1998) of the edge mode corresponds
quite closely to the region in which the modified Rayleigh criterion (e.g. Kloosterziel &
van Heijst 1991) is violated for an anticyclonic vortex when the background rotation
is relatively slow and, therefore, suggests the possibility of instability.

3.3. The limit of low ellipticity

The further issue that clearly arises from these analyses concerns the dominant mech-
anism of instability for the vortices with small ellipticity which are most frequently
observed in geophysical flows. It might be expected that the centrifugal mechanism
could dominate in this case. To investigate the validity of this expectation we have
also performed a similar instability analysis for the almost circular case of the Stuart
vortex with the vortex parameter ρ = 0.75.

The instability spectrum for this case with spanwise wavenumber d = 2.0 is shown
in figure 12. Only the most unstable modes are presented. As expected, the general
form of the spectrum is similar to results obtained in the previous analyses. The L1

longitudinal mode is again dominant in the vicinity of zero background rotation but
this mode is rapidly extinguished as the rate of rotation increases. The eigenvectors
of this mode for the wavenumber d = 2.0 are similar to the braid-centred structure
presented in figure 4(b) and therefore are not shown here. The most unstable mode for
the inverse Rossby number Ro−1 = 0.2 can be identified as the elliptical (ε) mode. This
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K′ v′ x′

Figure 13. The perturbation kinetic energy K ′, spanwise velocity v′ and spanwise vorticity ω′ fields
in the (X,Z)-plane for the edge E0 mode at the point d = 2.0, Ro−1 = 0.25. The vortex parameter
ρ = 0.75. Solid lines show isolines with positive values while dashed lines represent isolines with
negative values. The visual non-dimensional size of the domain is 2π× 2π.

mode is an elliptical instability modified by the Coriolis force. The main difference in
the spectrum for this almost circular case from those with higher ellipticity is that the
E0 fundamental harmonic of the edge mode family now appears in the spectrum. This
mode represents the dominant instability for strong anticyclonic vortices with this
ellipticity. The maximum growth rate for the edge mode now exceeds the maximum
growth rate for the elliptical (ε) mode, which was the dominant mode of instability for
Stuart vortices with higher ellipticity. The spatial structure of the mode is illustrated
in figure 13. Similarly to the first harmonic of the edge mode family, the perturbation
kinetic energy is concentrated in a ring around the two-dimensional core of the vortex.
In figure 14 (page 221) we illustrate all modes of instability for the Stuart model with
the vortex parameter ρ = 0.75 in the form of isosurface renderings of the perturbation
vorticity field.

On the basis of this example, we may conclude that the general behavior of the
unstable modes and thus the instability mechanisms for the rotating case of the Stuart
model vortex with low ellipticity are very similar to those for the Kelvin–Helmholtz
and ‘Kida-like’ vortices investigated in the previous work of Smyth & Peltier (1994)
and Potylitsin & Peltier (1998) respectively, where the edge mode family was shown to
be the dominant instability mechanism for strong anticyclones. Note that the elliptical
ε mode has also been shown to be present in the spectrum of the Kelvin–Helmholtz
and ‘Kida-like’ vortices with sufficiently high ellipticity (Potylitsin & Peltier 1998).

4. Summary
The goal of the analyses presented herein has been to investigate the dependence

of the linear stability of two-dimensional columnar vortex basic states in a rotating
environment to three-dimensional perturbations. We have focused upon the ellipticity
of the vortex columns and the nature of the instabilities to which they are subject. We
thereby sought to demonstrate the link between results obtained in recent work by
Leblanc & Cambon (1998) in which the elliptical instability modified by background
rotation was found to be dominant for strong anticyclones and the earlier work
by Smyth & Peltier (1994) and Potylitsin & Peltier (1998) in which the centrifugal
instability was found to be the dominant mode for the same rate of background
rotation. Our goal in this paper has been to provide a detailed assessment of the
circumstances in which these unstable modes may appear.

The model selected for the background vorticity distribution in the columnar
vortices was taken herein to be that provided by the Stuart model for various choices
of the vortex parameter. For the purpose of these analyses, it was assumed that the
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basic-state rotation may be either positive (in the same sense as the vorticity in the
column), which corresponds to the cyclonic vortex in our context, or negative (in
the opposite sense), which corresponds to the anticyclonic vortex. The influence of
rotation on the stability characteristics of the flows has been included in the f-plane
approximation.

The methodology that we have developed for performing such theoretical linear
stability analyses is by now well-known. It enables us to reduce the three-dimensional
linear perturbation equations that determine the stability of a two-dimensional basic
state into the form of a standard matrix eigenvalue problem whose solution reveals
the instability characteristics of the two-dimensional background flow.

In the first step of our analysis, we both recovered and extended the results of
previous analyses by Leblanc & Cambon (1998) for the Stuart vortex train in a
rotating environment. We focused on the stability of a train of two-dimensional
highly elliptical Stuart vortices with the vortex parameter ρ = 0.33. It was found that
the spectrum of three-dimensional instability is dominated at low background rotation
Ro−1 ≈ 0 by the L1 longitudinal mode. At low spanwise wavenumber the instability
for this branch is characterized by the core-centred segment of elliptical instability
in which the perturbation kinetic energy is concentrated in the vortex cores, but for
high wavenumbers by the segment of hyperbolic instability in which the perturbation
kinetic energy is concentrated in the strained regions between the primary vortices.
These analyses also confirm the results reported previously by Smyth & Peltier (1994),
which were conducted for Kelvin–Helmholtz billows at lower resolution. For strong
anticyclonic vortices the maximum destabilization was found to occur in the vicinity
of the point Ro−1 = 0.3. The perturbation kinetic energy of the mode labelled ε was
shown to be concentrated in the core of the two-dimensional vortex. The mechanism
for this mode has been identified as an elliptical instability modified by background
rotation. This mode was first identified by Potylitsin & Peltier (1998) in their stability
analyses of elliptical Kelvin–Helmholtz billows in the presence of rotation, although
it was found to be dominant only in a very narrow interval in the vicinity of the
point Ro−1 = 0.3. It will also be noted that our result is identical to that recently
obtained by Leblanc & Cambon (1998) for Stuart vortices with vortex parameter
ρ = 0.33, although these authors failed to distinguish the core-centred branch of the
L1 longitudinal mode as well as to identify the braid-centred hyperbolic branch of
the L1 instability.

In the next step, we performed three-dimensional analyses of the Stuart vortex with
lower ellipticity, namely for the vortex parameter ρ = 0.50. Maximum destabilization
for this case was found in the vicinity of the point Ro−1 = 0.25. This instability
was identified as the same ε elliptical mode as was revealed in the previous case of
the highly elliptical vortex. A further type of instability, however, was found to be
dominant in a narrow region near the point Ro−1 = 0.1. The perturbation kinetic
energy of this mode was shown to be concentrated in a ring surrounding the core
of the two-dimensional vortex and, therefore, we continue to refer to this mode,
following Smyth & Peltier (1994), as the edge mode. On the basis of the previous
work by Smyth & Peltier (1994) and Potylitsin & Peltier (1998) we gave good reason
to believe that the mechanism that underlies the edge mode is essentially centrifugal.
The spatial location of the edge modes does indeed correspond in an approximate
sense to the region in which the modified Rayleigh stability criterion is violated. No
analysis of the rotating Stuart vortex has previously revealed the existence of the
centrifugal mode.

The final aspect of the coherent structure destruction mechanisms analysed herein
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involved an investigation of the Stuart vortex with low ellipticity (ρ = 0.75). Through
analyses of this case we demonstrated that the edge mode becomes the dominant
mechanism of instability for vortices with low ellipticity, although the elliptical ε
mode still remains in the instability spectrum. The maximum growth rate for the E0

edge mode exceeds the growth rate for the elliptical ε mode for this value of ρ. This
result is therefore very similar to the result obtained by Potylitsin & Peltier (1998) for
Kelvin–Helmholtz and elliptical Kida-like vortices where the centrifugal instability
mechanism was found to be dominant for strong anticyclones.

In further work it will be our intention to discuss the detailed nonlinear evolution
of each of the linear secondary instabilities that our analyses have revealed, both
in the present paper and in Smyth & Peltier (1994) and Potylitsin & Peltier (1998).
It is only on the basis of such further investigation that we will be able to make
closer contact with the experimental results of Kloosterziel & van Heijst (1991) and
related investigations. A primary goal of this ongoing research is to understand which
of the various modes of secondary instability is actually responsible for creating
the finite-amplitude structures that experiments on columnar vortex stability have
revealed.

Appendix

The coefficients of the four-dimensional submatrices in the matrix equation (2.12) are
given by

(1 + δµ0)〈UU〉kµλν = −iλα〈F∗kµŨFλν〉 − 〈F∗kµŨxFλν〉
+Dν〈F∗kµW̃Gλν〉+ 2

λkα2

Akµ
〈F∗kµŨxFλν〉+ 2

ikαDν
Akµ

〈F∗kµW̃ xGλν〉,

(1 + δµ0)〈UW 〉kµλν = −〈F∗kµŨzGλν〉+ 2
λkα2

Akµ
〈F∗kµŨzGλν〉 − 2

ikαDν
Akµ

〈F∗kµW̃ zFλν〉,

〈WU〉kµλν = −〈G∗kµW̃ xFλν〉+
2iλαDµ
Akµ

〈F∗kµŨxFλν〉 − 2DνDµ
Akµ

〈F∗kµW̃ xGλν〉,

〈WW 〉kµλν = −iλα〈G∗kµŨGλν〉 − Dν〈G∗kµW̃Fλν〉
−〈G∗kµW̃ zGλν〉+ 2

iλαDµ
Akµ

〈F∗kµŨzFλν〉+
2DµDν
Akµ

〈F∗kµW̃ zFλν〉

in which Dν = νπ/H and Aλν = (λα)2 + d2 + D2
ν .
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